Mathematics & Computer Science

Seminars and Colloquia

Topology et al. Seminar

Wednesday, October 25, 2017

04:20 pm - 05:20 pm

Topology Seminar

Speaker: Arie Levit, Yale Title: Local rigidity of uniform lattices Abstract: A lattice is topologically locally rigid (t.l.r) if small deformations of it are isomorphic lattices. Uniform lattices in Lie groups were shown to be t.l.r by Weil [60']. We show that uniform lattices in any compactly generated topological group are t.l.r. A lattice is locally rigid (l.r) if small deformations arise from conjugation. It is a classical fact due to Weil [62'] that lattices in semi-simple Lie groups are l.r. Relying on our t.l.r results and on recent work by Caprace-Monod we prove l.r for uniform lattices in the isometry groups of certain CAT(0) spaces, with the exception of SL_2(R), which occurs already in the classical case. In the talk I will explain the above notions and results, and present some geometric ideas from the proofs. This is a joint work with Tsachik Gelander.

Exley Science Center Tower ESC 638

Wednesday, October 11, 2017

04:20 pm - 05:20 pm

Topology Seminar

Speaker: Noelle Sawyer, Wes Title: The specification property and closed orbit measures Abstract: Given a compact metric space X, and a homeomorphism T on X, the dynamical system (X,T) has the specification property if we can approximate distinct orbit segments with the orbit of a periodic point. I will present a result by Sigmund showing that if (X,T) has the specification property, any T-invariant measure on X can be approximated by a closed orbit measure.

Exley Science Center Tower ESC 638

Wednesday, October 04, 2017

04:20 pm - 05:20 pm

Topology Seminar

Speaker: Shelly Harvey, Rice University Title: Braids, gropes, Whitney towers, and solvability of links Abstract: The n-solvable filtrations of the knot/link concordance groups were defined as a way of studying the structure of the groups and in particular, the subgroup of algebraically slice knots/links. While the knot concordance group C^1 is known to be an abelian group, when m is at least 2, the link concordance group C^m of m-component (string) links is known to be non-abelian. In particular, it is well known that the pure braid group with m strings is a subgroup of C^m and hence when m is at least 3, this shows that C^m contains a non-abelian free subgroup. We study the relationship between the derived subgroups of the the pure braid group, n-solvable filtration of C^m, links bounding symmetric Whitney towers, and links bounding gropes. This is joint with with Jung Hwan Park and Arunima Ray.

Exley Science Center Tower ESC 638

Wednesday, September 27, 2017

04:20 pm - 05:20 pm

Topology Seminar

Speaker: Samuel Lin, Dartmouth Title: Curvature Free Rigidity of Higher Rank Three- manifolds Abstract: Fixing K=-1, 0, or 1, a Riemannian manifold (M, g) is said to have higher hyperbolic, spherical, or Euclidean rank if every geodesic in M admits a normal parallel field making curvature K with the geodesic. Rank rigidity results, which usually involve a priori sectional curvature bounds, characterize locally symmetric spaces in terms of these geometric notions of rank. After giving a short survey of historical results, Ill discuss how rank rigidity holds in dimension three without a priori sectional curvature bounds.

Exley Science Center Tower ESC 638

Wednesday, November 30, 2016

04:20 pm - 05:30 pm

Topology Seminar

Boris Gutkin, University Duisberg-Essen: Pairings between periodic orbits in hyperbolic coupled map lattices. Abstract: Upon quantization, hyperbolic Hamiltonian systems generically exhibit universal spectral properties effectively described by Random Matrix Theory. Semiclassically this remarkable phenomenon can be attributed to the existence of pairs of classical periodic orbits with small action differences. So far, however, the scope of this theory has, by and large, been restricted to small-dimensional systems. I will discuss an extension of this program to hyperbolic coupled map lattices with a very large number of sites. The crucial ingredient is a two-dimensional symbolic dynamics which allows an effective representation of periodic orbits and their pairings. I will illustrate the theory with a specific model of coupled cat maps, where such a symbolic dynamics can be constructed explicitly. The core of the talk is based on the joint work with V. Osipov: Nonlinearity 29, 325 (2016) and a work in progress with P. Cvitanovic, R. Jafari, L. Han, A. Saremi.

Exley Science Center Tower ESC 121

Wednesday, September 28, 2016

04:20 pm - 05:30 pm

Topology Seminar

Dave Constantine, Wes: " Hausdorff dimension and the CAT(K) condition for surfaces" Abstract: A geodesic metric space satisfies the CAT(K) condition if its geodesic triangles are all `thinner' than triangles with the same side lengths in the model space of constant Riemannian curvature K. This condition allows one to extend many arguments relying on an upper curvature bound from Riemannian geometry to the metric space setting. How `strange' can a metric be while still satisfying the CAT(K) property? One way to measure this is with the difference between the topological dimension of the space and its Hausdorff dimension with respect to the metric. In this talk I'll show that, at least for surfaces, a CAT(K) metric is tame in the sense that it yields Hausdorff dimension 2. I'll also provide some motivation for this question by showing how results like this allow one to extend volume entropy rigidity statements to the CAT(-1) setting.

Exley Science Center Tower ESC 638

Wednesday, March 23, 2016

04:15 pm - 05:30 pm

Topology Seminar

Scott Taylor, Colby College: Neighbors of knots in the Gordian graph Abstract: Switching a crossing on a knot diagram is one of the simplest methods for converting one type of knot into another type of knot. The Gordian graph is the graph which keeps track of which knot types can be converted into which other knot types by a single crossing change. Its vertex set is the set of knot types and its edge set consists of pairs of knots which have a diagram wherein they differ at a single crossing. Bridge number is a classical knot invariant which is a measure of the complexity of a knot. It can be re_ned by another, recently discovered, knot invariant known as \bridge distance". We show, using arguments that are almost entirely elementary, that each vertex of the Gordian graph is adjacent to a vertex having arbitrarily high bridge number and bridge distance. This is joint work with Ryan Blair, Marion Campisi, Jesse Johnson, and Maggy Tomova.

Exley Science Center Tower ESC 638

Wednesday, March 02, 2016

04:15 pm - 05:30 pm

Topology Seminar

Katherine Raous, Brandeis University: "Rational knots, Rational Seifert surfaces and genus bounds" Abstract: Let K be a knot in a 3-manifold Y that represents a torsion class in the first homology of Y. Since K is torsion, it has finite order, p, and unless p=1, K does not bound a surface in Y. However, we can always find a surface which wraps p times around K. Using this construction, Ni showed that K defines a filtration of the Heegaard Floer chain complex of Y indexed by the rationals. We will use this filtration to define analogues of the Ozsvath-Szabo tau-invariants for such knots and show that when Y bounds a rational homology ball, these invariants give a lower bound for the genus of a surface with boundary K.

Exley Science Center Tower ESC 638

Wednesday, November 11, 2015

04:15 pm - 05:15 pm

Topology Seminar, Alyson Hildum (Wes): "Right-angled Artin groups with tame cohomology"

Abstract: In this talk we will discuss certain group cohomological conditions arising in the study of 4-manifolds with right-angled Artin fundamental groups. While investigatinga 4-manifold classification problem, Ian Hambleton and I discovered an interesting question about the cohomology of right-angled Artin groups (RAAGs) with group-ring coefficients. We call a $G$-module A a torsion module if $Hom_{ZG}(A,ZG)=0$ (where ZG is the group-ring). For any group $G$, the group cohomology group $H^i(G;ZG)$ is a $G$-module, and one can ask under which conditions these cohomology groups are torsion modules. Certain conditions on the cohomology groups (which we call "tame cohomology") allow for a better understanding of the structure of the second homotopy group of a 4-manifold $M$, $\pi_2(M)$, as a $\pi_1(M)$-module, which is necessary for tackling our classification problem.

Exley Science Center (Tower)

Wednesday, October 21, 2015

04:15 pm - 05:00 pm

Topology Seminar: John Schmitt (Middlebury): "Two tools from the polynomial method toolkit"

Abstract: The polynomial method is an umbrella term that describes an evolving set of algebraic statements used to solve problems in arithmetic combinatorics, combinatorial geometry, graph theory and elsewhere by associating a set of objects with the zero set of a polynomial whose degree is somehow constrained. Algebraic statements about the zero set translate into statements about the set of objects of interest. We will examine two tools from the polynomial method toolkit, each of which generalizes the following, well-known fact: a one-variable polynomial over a field can have at most as many zeros as its degree. The first generalization which we will discuss is Alons Non-vanishing Corollary, a statement for a multivariate polynomial introduced in the 1990s that follows from his celebrated Combinatorial Nullstellensatz. The second generalization is the Alon-Furedi Theorem, a statement which gives a lower bound on the number of non-zeros of a multivariate polynomial over a Cartesian product. We give an application for each of these tools. For the first we show how to apply it to a combinatorial problem of the polymath Martin Gardner known as the minimum no-three-in-a-line problem. For the second we show how it quickly proves a number-theoretic result from the 1930s due to Ewald Warning, a statement which gives a lower bound on the number of common zeros of a polynomial system over a finite field.

Exley Science Center (Tower)

Wednesday, October 14, 2015

04:15 pm - 05:00 pm

Topology Seminar: Tue Ly (Brandeis): "Diophantine approximation on number fields, homogenous dynamics and Schmidt game"

Abstract: In 1960's, Wolfgang Schmidt used his (\alpha, \beta)-game to prove that the set of badly approximable numbers has countable intersection property. In this talk, I will discuss about extending Schmidt's result to the set BA_K of vectors badly approximable by elements of a fixed number field K using the connection to homogeneous dynamics and recent developments of Schmidt's game. This strengthens a recent result by Anish Ghosh, Beverly Lytle and Manfred Einsiedler concerning the intersection of BA_K with curves. Joint work with Dmitry Kleinbock.

Wednesday, September 16, 2015

04:15 pm - 05:15 pm

Topology Seminar, Dan Licata (Wes): "Structural Proof Theory of Adjoint Functors"

Abstract: Adjoint functors are a central tool in category theory, because an adjunction provides a well-behaved way to compare two objects that belong to two different categories. They are related to modal logic, because every adjunction gives rise to both a comonad, which is like a necessitation modality, and a monad, which is like a possibility modality. In this talk, I will describe some work, joint with Mike Shulman (University of San Diego), investigating the structural proof theory of adjoint functors. An application is integrating the synthetic homotopy theory of homotopy type theory with the synthetic topology of Lawvere's axiomatic cohesion, which opens up new opportunities for proofs and formalizations in type theory.

Exley Science Center (Tower)

Wednesday, April 22, 2015

04:15 pm - 05:30 pm

Topology Seminar, Chris Arretines (CUNY): 'Combinatorial and algorithmic questions in low dimensional topology'

Abstract: I will discuss how several geometric and topological questions related to curves on surfaces can be presented in terms of combinatorial data, and I will outline algorithmic methods for answering these questions. In particular, I will discuss how to determine intersection numbers for collections of curves, and how to determine whether or not a collection of curves is filling, which means that the complement of the curves is a disjoint union of topological disks. The study of these properties is motivated in part by the role of curves on surfaces in proving several powerful theorems related to Teichmueller space, which I will try to convey. Time permitting, I will also showcase some interesting constructions motivated by exploring the above algorithms.

ESC 638

Wednesday, April 15, 2015

04:15 pm - 05:30 pm

PhD Defense/Topology Seminar, Brett Smith (Wes): 'On Minimality of Planar Graphs with Respect to Treewdith'

Abstract: Robertson and Seymour developed the parameter, treewidth, in order to prove the Graph Minors Theorem, which says that the class of finite, undirected graphs is well-quasi-ordered by the minor relation. The treewidth of a graph can be defined using structures called brambles. A clique is a simple example of a bramble, but brambles can be much more intricate. The primary result in our work is a characterization of a family brambles in planar graphs, called 3-nets, along with an algorithm for determining the order of any bramble in this family. The 3-nets lead us to several results on the minimality of planar graphs with respect to tree width.

ESC 638

Wednesday, March 25, 2015

04:15 pm - 05:30 pm

Topology Seminar, Ann Trenk (Wellesley): 'Unit Interval Orders of Open and Closed Intervals'

Abstract: The class of unit interval orders arises in scheduling problems and has a lovely forbidden poset characterization. The characterization remains the same whether the intervals used in the representation are all open intervals or all closed intervals. In this talk we consider the class of posets that arise when both open and closed unit intervals are allowed in the same representation. We give a structural characterization of this class of posets and an efficient algorithm for recognizing the class. The algorithm takes a poset P as input and either produces a representation or returns a forbidden poset induced in P.

ESC 638

Wednesday, March 04, 2015

04:15 pm - 05:30 pm

Topology Seminar, Anthony Hager (Wes): 'The sigma property in C(X)'

Abstract: A vector lattice is a real linear space with a compatible lattice-order.Examples are C(X) (continuous functions from the topological space X to the reals ),and any abstract 'measurable functions mod null functions'.The sigma property of a vector lattice A is (s) For each sequence (a(n)) in A+,there are a sequence (p(n)) of positive reals and a in A,for which p(n)a(n) < a for each n.Examples:C(X) for compact X (trivial);Lebesgue Measurable mod Null (not trivial;connected with Egoroff's theorem).An application:If a quotient A/I has (s),the the quotient map lifts countable disjoint sets to disjoint sets.We consider which C(X) have (s),for example: For discrete X,C(X) has (s) iff the cardinal of X < the bounding number b. For metrizable X ,C(X) has (s) iff X is locally compact and each open cover has a sub cover of size <b. (This much studied'b' is the minimum among cardinals m for which any family of functions from the positive integers N to N of size < m is bounded in the order of eventual domination for such functions.It is uncountable,no bigger than c,and regular.In ZFC,not much more can be said.)

ESC 638

Wednesday, November 19, 2014

04:15 pm - 05:15 pm

Topology Seminar, W. W. Comfort (Wesleyan Emeritus): 'Counting Compact Group Topologies'

Abstract: Given a group K let 𝔠𝔤𝔱 (K ) be the set of Hausdorff compact group topologies on K. The authors ask: when |K | = κ ≥ ω, what are the possible cardinalities of a pairwise homeomorphic subset (h) ⊆ 𝔠𝔤𝔱 (K ) [resp., pairwise nonhomeomorphic subset 𝕍(n) ⊆ 𝔠𝔤𝔱 (K )]? Revisiting (sometimes improving) therorems of Halmos, Hulanicki, Fuchs, Hawley, Chuan/Liu and Kirku, the authors show inter alia:Always |𝕍 (h )| ≤ 2κ and |𝕍 (h )| ≤ κ.If K is abelian and some 𝖳 ∈ 𝔠𝔤𝔱 (K ) is connected, then |𝕍 (h )| = 2κ does occur. In particular for λ ≥ ω and K = ℝλ or K = 𝕋λ, |𝕍 (h )| = 2(2λ) does occur.[K not necessarily abelian] If some 𝖳 ∈ 𝔠𝔤𝔱 (K ) is connected and the connected component Z0 ( K, 𝖳) of the center of ( K, 𝖳) satisfies π1(Z0 ( K, 𝖳)) ≠ {0}, then |𝔠𝔤𝔱 (K)| ≥ 2𝔠.Corollary to 3: Every nonsemisimple compact connected Lie group admits exactly 2𝔠-many compact group topologies.For K = 𝕋: |𝕍(n)| = 𝔠 occurs in ZFC.For K = ℝ: |(n)| = ω occurs in ZFC; |𝕍(n)| = ω is best possible in ZFC+CH; and |𝕍(n)| > ω is consistent with ZFC.*Joint work with Dieter Remus